
separation radius of the vortices; c - cooled flow; h - heated flow; s - supplemented flow; cr - critical cross section; * 

- deceleration parameter; z - axial component; ~o - circular component; r - radial component; st - static parameter; meas 
- measurement; ' - pulsed component. 
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I. V .  D e r e v i c h  UDC 532.529 

The influence of inertia, averaged phase slip, and inhomogeneity of the turbulent carrier stream on the 
parameters of the disperse phase in the flow of a gas suspension in a round pipe is investigated on the basis 
of a closed system of equations for the first and second moments of particle velocity pulsations. 

The averaged characteristics of a disperse phase (particle concentration, average velocity) depend essentially on the 
intensity of the pulsating motion of the particles. The pulsation energy of the disperse phase is determined by three main 
factors. The first is the particle inertia, equal to the ratio of the time of dynamic relaxation of particles to the integrated 
macroscopic time scale of turbulence of the carrier stream. As the time of dynamic relaxation of the particles decreases, the 
pulsation energy of the discrete phase approaches that of the carrier phase. An increase in the time of dynamic relaxation of 
the particles in comparison with the lifetime of energy-carrying vortices decreases the degree of entrainment of particles in the 
pulsating motion. The influence of particle inertia on the pulsation characteristics of a disperse admixture in a homogeneous 

turbulent stream has been well studied, in [ 1, 2], for example. 
Second, in particle flow under the conditions of averaged velocity slip, an effect of "crossing of trajectories" of 

particles and turbulent floats arises. As a result of the continuous renewal of turbulent floats crossing a particle trajectory, the 
autocorrelation function of pulsations of gas velocity along a particle trajectory decays faster than the original autocorrelation 
function of gas velocity pulsations, leading to a decrease in the intensity of pulsating motion of the discrete admixture and to 
a decrease in the turbulent diffusion coefficient of the particles. In the case of isotropic turbulence, the action of the averaged 
velocity slip of the phases on the pulsation characteristics of the particles has been investigated both experimentally and 

theoretically in [3-8]. 
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The third factor that determines the level and character of the spatial variation of pulsation energy of the discrete phase 

in streams with velocity shear is the nonuniformity of the field of turbulent velocity pulsations of the carrier phase, especially 
near a confining solid surface. Nonlocality effects, when the pulsation characteristics of particles at a given point of space 
depend integrally on the characteristics of the liquid phase, are important in this case. The nonlocal character of the pulsation 
energy of the disperse admixture is due to the correlation between particle trajectories leading to the given point of space, and 
it increases with increasing particle inertia. Nonzero velocity and pulsation energy of the disperse phase at the surface are 
observed as a result, leading to the development of intense averaged phase slip and the deposition of particles onto the channel 
walls. The effect of averaged phase slip has been investigated experimentally (see, e.g., the review in [9]), by direct stochastic 
simulation of individual particle trajectories [10-12], and by solving the system of equations for the first and second moments 

[13]. A fairly complete review of calculation methods and experimental data on particle deposition in turbulent flow in channels 
is given in [14]. Of more recent papers, we note [15-19]. 

From the foregoing, it follows that simultaneous allowance for all factors is necessary for a correct description of the 
flow of a disperse phase in an inhomogeneous turbulent stream. In the present paper we calculate the distributions of 
concentration and deposition rate of an admixture, the averaged phase slip, and the intensity of pulsating motion of particles 
in pipes on the basis of a closed system of equations for the averaged velocity and concentration, as well as the intensity of 
transverse velocity pulsations of the disperse admixture, with boundary conditions allowing for the character of the interaction 
of particles with the channel walls [13]. The influence of the "trajectory crossing" effect on the coefficients of turbulent 
transport of momentum and mass of the disperse phase is described in accordance with [20]. 

1. The equations and boundary conditions for calculating the intensity of transverse pulsations of particles and the 
averaged velocity of the disperse phase in cylindrical coordinates have the form [13] 

D +  m 

1 d [ n da+ ] da+ 
dy 

2R~- ~+ = - 2  R~- [e+; d,r__~+ = O, -~ = l, 
T+ T+ dy 

d(r+ [ (_@ \1/2 1--• 
a~ R+ V~++2 ~+) I+ ;~ ~+=o, ~=o, 

(1) 

(2) 

1 d [ T,+a+ dVx ]_R+V~+ dV,: 

dV~ R~+r4= e%0~, - - - = o ,  ~=l, T+- -- T+ (3) 

%+O'+2 dlTxdy R+ [ VF+ -~ (~13"+)1/2 ll-glg2'] ~x= 0 ' - - ~  %1~42 y= 0, (4) 

where a+ and e+ are the second moments of transverse velocity pulsations of the disperse and continuous phases in dynamic 
variables; Vy+ is the transverse velocity of the disperse phase in dynamic variables; "V'x is the longitudinal velocity of the 
disperse phase, normalized to the average-mass velocity of the carrier phase; x 1 and x 2 are the coefficients of restitution of 
particle momentum in collisions with the channel walls in the longitudinal and transverse directions. The turbulent diffusion 
coefficient D+ of the particles in the dynamic variables is calculated from the equation 

D+ = •+ (a+ 4- ge+). (5) 
In calculating the time r+ of dynamic relaxation of particles in the universal variables, we allow for the velocity of 

streamline flow due to the averaged phase slip. 

385 



The particle concentration and the transverse velocity of the disperse phase are calculated from the equation 

ac 
--cVv+ = D+ 

@ 
- -  R +  (Vmig+  -~- Uy+) T= R-l- (I - -  y) J+ ,  (6) 

2 \i /2 1_• c, y = 0 ,  (7) 
s+ = 1 + . 3  

1 

Vmig+= R+'r'+ dCr+dy , C=C/Cm, cm= 2 S d-y(1-- y) (8) 

where Vmig + is the migration velocity of the particles, due to the spatial nonuniformity of turbulent energy of the discrete 
phase, and J+ = Vy/u+ is the dimensionless rate of deposition of particles of the admixture onto the channel walls. 

2. The influence of the averaged velocity of phase slip on the degree of entrainment of particles into the pulsating 
motion of the carrier phase is calculated on the basis of allowance for nonlocal effects due to the different degrees of particle 
entrainment in the small-scale pulsating motion that forms an energy-carrying float [20]. The source term fe+ in Eq. (1) for 
the intensity of transverse particle pulsations and the term ge+ in Eq. (5) for the turbulent diffusion coefficient of the particles 

are written in the form 

feu(x' t )= 1 S ( ) ~ d y  dsexp - - +  Ru(x; y, s) G(y, s), 
�9 0 

(9) 

SdY ds 1 - - e x p  - -  Rn(x; y, s) G(y, s), 
' '  0 

2 (x ,  t) > Ri~(x; y, s ) = ( u i ( x ,  t) u i ( x + y ,  t + s ) ) ,  eu(x, t ) = ( u i  

G(y, s) = ~ (2~/~)-'/2exp (Yi--W~s)~ 
~=, 21,2. ' 

12 = .~2[~ (o'u + eu), f0 = 1 - -  exp (--Tp/'O, W~ = lUi -- Vii, 

(10) 

(11) 

where Rii(x; y, s) is the correlation o f  velocity pulsations of the carrier phase in the i-th direction, calculated for a particle 
trajectory; G(y; s) is the probability density for the transport of particles over a distance y in a time s;/i  2 is the square of the 
characteristic displacement of a particle within an energy-carrying float in a time s = Tp (Tp is the characteristic time of 
interaction of a particle with a turbulent float). Since the Lagrangian and Eulerian scales of velocity pulsations of the earner 
phase differ considerably in magnitude [21, 22], in determining the degree of entrainment of the disperse admixture in the 
turbulent motion one must allow for the transformation from the Lagrangian characteristics of pulsations of the carrier phase 
along the trajectory of a low-inertia particle to the Eulerian characteristics along the trajectory of a high-inertia particle if the 
averaged velocity slip of the phases is significant [23]. As the quantitative criterion for this transformation, we take the ratio 
e~ = (yp2)l/2/LL, where 

< y~ ) = fdyy~O (y, TL) = W~T~ + 

The characteristic scales of decay of the correlation of gas velocity pulsations along a particle trajectory are calculated 

from the equation 

[3p = cr + l~ I~.o T~ Lp ~ TL LL 
~z @ 1 ' T~ Le Te Le 

where L E and T E are the Eulerian spatial and temporal macroscopic scales of gas velocity pulsations, measured in the 
coordinate system moving with the averaged stream velocity. Without allowance for the influence of the inertial of the 
admixture on the characteristic time of interaction of particles with a turbulent float (/i 2 = 0), from (9)-(11) we have 

'F 0 
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Fig. 1 Fig. 2 

Fig. 1. Influence of the phase slip velocity on the Lagrangian time scale of 
particle velocity pulsations: solid curves) dp = 5/~m; dashed curves) 57/xm; 
curves) calculation; points) experiment [4]; a) dp = 5/zm; b) 57 #m; 1) x/M 
= 30; 2) 45; 3) 90. 

Fig. 2. Lagrangian time scale of particle velocity pulsations as a function of 
particle dynamic relaxation time in the case of gravitational settling: curves) 

calculation; points) experiment [3]; 1) x/M = 41; 2) 73; 3) 171; r,/zsec. 

"r b L 

In the case of the approximation R(y; z, s) = e(y)~o(z, s), ~o(z, s) = exp(-  [ z I /Lp - [ s ] /Tp), we obtain 

(13) 

f = [1 -t- f~/[3p (1 + a)] -1, a = IV~u, 

g -- [3p/f~ (1 q- a) -1 - -  f, f2 = "~/TE, u = e'/2. (14) 

3. Let us illustrate the influence of the averaged velocity slip of the phases on the pulsation characteristics of particles 
in the case of uniform isotropic turbulence. For a comparison with existing experimental data [3, 4], we calculate the 
Lagrangian time scale of velocity pulsations of the discrete phase: 

TpL = S dy f dsqJ (y, s) G (y, s) X 
0 

• [ + ~ d y f d s e x p ( - - + ) q ~ ( y ,  s)G(y, s)1-1. 
0 .J 

In the case l = 0 and the previously chosen approximation of the function r we have 

TpL = [30 1 -t- f2/[~p (1 + r 
T~ (1 -1- a) 

In Figs. 1 and 2 we compare experimental and calculated data (13 = 0.5 [22]) on the influence of the relative velocity 
on the Lagrangian time scale of particle velocity pulsations for a low-inertia admixture (12 < 1). In the case of Fig. 1, the phase 
slip was caused by an electric field acting on charged particles; in the case shown in Fig. 2, the velocity mismatch was due 
to gravitational settling of particles. 

We used the system of equations (1)-(8) and Eqs. (14) to calculate particle flow in channels with absorbing and 
reflecting walls. The system (1)-(4) was numerically integrated by the sweep method with interactions on a nonuniform grid 
with 70 nodes (the relative calculation error was less than 5" 10-3). We solved Eq. (5) for the particle concentration by the 
predictor-corrector method (a three-step algorithm [24]). For low-inertia particles (r+ < 10) the grid was bunched near the 
boundaries so that there were at least six grid nodes within a distance - r +  from the wall, in which case the boundary 
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Fig. 3. Distribution of the transverse component of particle 
pulsation velocity near the channel wall: points) data of [ 18]; 

curves) calculation; 1) r+ = 1; 2) 15; 3) 100. 
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Fig. 4. Influence of particle inertia on the deposition rate of the disperse 
admixture: points) data of [14, 18, 28]; curves) calculation: 1) R+ = 5-103; 
2) 3.103; 3)1.103; 4) 6.102 . 

conditions in the interior of the stream were chosen from the condition of asymptotic approach of the characteristics of the 
disperse phase to the corresponding characteristics of the carrier stream. The distribution of the intensity of transverse velocity 

pulsations of the carrier stream was specified in the form [25] e+(y+) = b[1 - exp(-y+/A+)]  2, where A+ = 30 and b = 
1. The averaged velocity profile of the carrier stream was chosen in the form of the Reichardt approximation [26]. The Eulerian 
macroscopic time scale of turbulent pulsations across the channel was taken to be 10 for y+ < 5, and for larger distances from 
the wall it was calculated from the equation [27] 

Te+ = 1?Le+le~_/2, I? = 1 .16 ,  

where the scale of the turbulence was determined by Nikuradse's method. 

The distribution of the transverse pulsation velocity v+ = 0-+ 1/2 of particles in the case of the flow of drops (x 2 = 
0) in a round pipe (R+ = 103) is shown in Fig. 3. It is seen that for high-inertia particles, the pulsation velocity of the 
admixture at the wall differs from zero. With increasing particle inertia, the turbulent energy of the particles varies little across 
the channel. The intensity of penetration of particles into the wall region of flow determines the rate of deposition of the 
disperse admixture onto the channel walls. Figure 4 illustrates the dependence of the deposition rate on the dimensionless time 

of dynamic relaxation of the particles; calculated in the Stokes approximation. The experimental data were borrowed from [14] 
and supplemented from [18, 28]. For r+ < 102, a universal domain is observed in which the deposition intensity is determined 
by the behavior of particles in the region near the channel wall. For r+ > 103, , the deposition intensity depends on the degree 
of particle entrainment into pulsating motion in the stream core. The turbulent energy of the admixture then depends on the 

ratio r+/R+.  For very high-inertia particles (% > 104), a decrease in the deposition rate is observed because of the decrease 

388 



, 3 1,0 

70-: ~ o,s 

70 
104- ' l~aRe 0 

U 
Urn' 

I 
o,'~ 7,o r 

Fig. 5 Fig. 6 

Fig. 5. Influence of the stream Reynolds number on the particle deposition 

rate: points) data of [14]; curves) calculation: 1) ~.+o = 0.1; 2) 1; 3) 5. 

Fig. 6. Distribution of the averaged velocity of the disperse phase over a pipe 
cross section for different conditions of interaction of particles with the 
channel walls (R+ = 3-103): dashed line) Ux; 1) T+ = 105, xl  = 0.5, x z 

= 0; 2) r+ = 10 5, x 1 = 0.8, • = 1; 3) r+ = 105, x i = 0.5, x 2 = 1; 
4) r+ = 105, • - 0, x 2 = 1; 5) r+ = 104, x I = 0.8, x 2 = 1; 6) r+ = 
10 6 , x  t = 0 . 8 ,  x 2 = 1. 

in turbulent energy of the admixture in the stream core. By varying the Reynolds number of the stream, one can control the 

intensity of particle deposition onto the walls (Fig. 5). A sharp increase in deposition rate with increasing Reynolds number 
occurs for particles with initially small T+ ~ = 10-1. For an admixture of larger particles, the deposition depends less strongly 

on the Reynolds number. 

In Fig. 6 we give the distribution of the averaged particle velocity as a function of the nature of the interaction with 
the channel walls. In the case of the flow of drops (an absolutely absorbing surface, x 2 = 0), the average-mass velocities of 
the admixture and the carrier phase are similar. The discrepancy in axial velocities is caused by nonlocal effects due to particle 
inertia. Intense velocity slip between the phases develops in a channel with walls that restore particle momentum in the 
transverse direction (x 2 = 1) and decrease the longitudinal momentum (x 1 < 1). The averaged slip then increases with 
increasing ratio T+/R+ and decreasing momentum restitution coefficient x 1. 

The method given here for calculating the averaged and pulsation characteristics of the disperse phase in an 

inhomogeneous turbulent stream reflects the main relationships in that complicated class .of two-phase flows. 

NOTATION 

~, e, intensities of transverse velocity pulsations of particles and carrier gas; R, channel radius; T, dynamic relaxation 
time of particles; Vx, Ux, averaged flow velocities of the disperse phase and the carrier stream; Vy, Uy, transverse flow 
velocities of the disperse phase and the gas; .9 = y/R, relative transverse coordinate, measured from the channel wall; D, 
turbulent diffusion coefficient of the particles; c, c m, particle concentration and its average-mass value; J, rate of deposition 

of particles onto the channel wall; W, modules of the relative velocity of particles and gas; TE, LE, Eulerian temporal and 
spatial macroscopic scales of gas velocity pulsations; TL, LL, Lagrangian temporal and spatial macroscopic scales of gas 
velocity pulsations; dp, particle diameter; x/M, ratio of the downstream distance from the turbulizing grid to the cell size M; 
TpL, Lagrangian temporal macroscopic scale of particle velocity pulsations; v = a 1/2, root-mean-square velocity of particles 
in the transverse direction; u+, dynamic stream velocity. Index: + ,  quantities measured in dynamic variables. An overbar 
denotes a variable normalized to its average-mass value. 
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